
12/10/2021

The 0 to 1 guide for MEV

This is a quick and dirty guide to MEV meant to get you up to speed on the latest in the space, nothing more,

nothing less. The guide is sorted so that each subsequent topic builds upon previous knowledge, and

increases in complexity as topics advance. Obviously skip things you already know. The guide is also nested

depending on the level of depth you wish to explore for each particular topic. Each nested child topic

represents a further niche concept in the parent topic. Most general Crypto/DeFi topics will just point you

to existing high quality material (no need to reinvent the wheel) but more advanced MEV topics (and alpha)

will consist of everything I know and what I’ve learned along the way. Just be warned this is effectively

throwing you in the deep end. By the end of this you should be able to build your own MEV Bots. Good luck.

What is Blockchain

What is Ethereum

Smart Contracts

What is DeFi

ERC-20 Tokens / AKA Most Shitcoins

Stablecoins

What is an Automated Market Maker AKA Decentralized Exchanges

A look at Uniswap V2. The OG AMM

Uniswap V3

What is Curve

Decentralized Bank

AAVE

Compound

Liquity/Maker Dai

Oracles

Forks

Centralized Exchanges

MEV

MEV Strats 101

Sandwiching

Arbitrage

Liquidations

Generalized Frontrunning

Just In Time (JIT) Liquidity

Long Tail

Examples

PGAs

Flashbots

Smart Contracts / Dev Tooling

Game Theory / Social Dynamics / Security

Alpha Leaks

ERC-20 Hacks

https://twitter.com/0xmebius https://github.com/0xmebius

https://twitter.com/0xmebius


12/10/2021

Uniswap Hacks

Calldata Hacks

Leading 0s

Ephemeral Smart Contracts

Get Information

Flash Loans and Multicall

LEARN RUST

What is Blockchain

Easy (~5min):

https://www.coinbase.com/learn/crypto-basics/what-is-a-blockchain

Medium (~30min)

https://www.investopedia.com/terms/b/blockchain.asp

What is Ethereum

Easy (~5min):

https://ethereum.org/en/what-is-ethereum/

Medium (~1hr):

https://ethereum.org/en/whitepaper/

Hard (~1 day):

https://ethereum.github.io/yellowpaper/paper.pdf

Developer Intro:

https://ethereum.org/en/developers/docs/

Rabbit Hole:

https://ethereum.org/en/learn/

Smart Contracts

Easy:

https://ethereum.org/en/smart-contracts/

Hard:

https://github.com/ethereumbook/ethereumbook/blob/develop/07smart-contracts-solidity.asciidoc

#what-is-a-smart-contract

Learn through a Course (~7 Days):

https://cryptozombies.io/

https://twitter.com/0xmebius https://github.com/0xmebius

https://www.coinbase.com/learn/crypto-basics/what-is-a-blockchain
https://www.investopedia.com/terms/b/blockchain.asp
https://ethereum.org/en/what-is-ethereum/
https://ethereum.org/en/whitepaper/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.org/en/developers/docs/
https://ethereum.org/en/learn/
https://ethereum.org/en/smart-contracts/
https://github.com/ethereumbook/ethereumbook/blob/develop/07smart-contracts-solidity.asciidoc#what-is-a-smart-contract
https://github.com/ethereumbook/ethereumbook/blob/develop/07smart-contracts-solidity.asciidoc#what-is-a-smart-contract
https://cryptozombies.io/
https://twitter.com/0xmebius


12/10/2021

Learn Everything Fast (~1 Day):

https://docs.soliditylang.org/

Learn By Example:

https://github.com/James-Sangalli/learn-solidity-with-examples

Boilerplate Code:

https://docs.openzeppelin.com/contracts/4.x/

What is DeFi

Quick High Level:

https://ethereum.org/en/defi/

If You Want to Read Everything:

https://docs.ethhub.io/built-on-ethereum/open-finance/what-is-open-finance/

ERC-20 Tokens / AKA Most Shitcoins

https://cointelegraph.com/explained/erc-20-tokens-explained

Anyone can deploy an ERC 20 token on the Ethereum blockchain. Depending on gas prices it

can cost anywhere from $5-$500 to deploy an ERC-20 token contract. Compared to creating a

whole new blockchain from scratch, ERC-20s are the easiest way for anyone to create a

cryptocurrency thus making it the most commonly used mechanism to launch shitcoins.

Developer Docs:

https://ethereum.org/en/developers/docs/standards/tokens/erc-20/#top

https://docs.openzeppelin.com/contracts/4.x/erc20

https://eips.ethereum.org/EIPS/eip-20

Find Some Tokens:

https://etherscan.io/tokens

Stablecoins

A stablecoin is a cryptocurrency with the sole purpose of achieving parity with the US Dollar.

Stablecoins help increase liquidity in the DeFi space by negating the need to constantly on

and off ramp crypto with fiat and allowing an easy mechanism to exchange other crypto

assets with dollar based tokens.

There are two broad overarching types of stablecoins. Centralized and Algorithmic

stablecoins:

Centralized stablecoins consist of a corporation that accepts dollar deposits and mint the

corresponding amount of stablecoins for the depositor. Centralized stablecoins have the

https://twitter.com/0xmebius https://github.com/0xmebius

https://docs.soliditylang.org/
https://github.com/James-Sangalli/learn-solidity-with-examples
https://docs.openzeppelin.com/contracts/4.x/
https://ethereum.org/en/defi/
https://docs.ethhub.io/built-on-ethereum/open-finance/what-is-open-finance/
https://cointelegraph.com/explained/erc-20-tokens-explained
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/#top
https://docs.openzeppelin.com/contracts/4.x/erc20
https://eips.ethereum.org/EIPS/eip-20
https://etherscan.io/tokens
https://twitter.com/0xmebius


12/10/2021

widest adoption by far due to their ease of use, integration with much of the traditional

financial system and centralized exchanges. The two most widely used stablecoins are

Tether’s USDT and Circle’s USDC with a combined circulating supply of ~117 Billion USD.

However, these centralized stablecoins go against the entire ethos of the trustless

decentralized nature of blockchain. There is significant uncertainty regarding the true

backing of these stablecoins. Tether is notoriously opaque and has never produced an audited

report regarding the backing of it’s stablecoins. Read more here. Circle, while nowhere near

as suspect still has questions regarding the assets backing its coin and should likewise be

treated with caution.

Decentralized Stablecoins represent the purest form of a dollar pegged cryptocurrency in

DeFi. At its core decentralized stablecoins attempt to achieve dollar parity by having users

deposit collateral and mint the protocol’s native stablecoin against their deposited assets.

Read this to get a complete understanding of how they work.

There are a lot of existing stablecoin protocols. The largest and most widely used is

MakerDAO’s protocol which mint’s the native stablecoin DAI.

Developer Docs:

https://makerdao.com/en/whitepaper/

https://docs.makerdao.com/

Another more recent project is the Liquity protocol and their native stablecoin LUSD. They

offer greater capital efficiency (you can mint more stablecoins against the same assets) by

utilizing a novel liquidation mechanism.

Developer Docs:

https://docs.liquity.org/

Finally, there are more exotic flavors of algorithmic stablecoins, some which attempt to

maintain dollar parity without collateral but rather various algorithmic monetary policies.

These are much more dangerous and prone to failure due to the fact that they rely on

external market dynamics and “soft” pegs. They often fail catastrophically if certain

economic limits are breached.

Read more here:

https://cryptobriefing.com/algorithmic-stablecoin-crashes-50-devs-scramble-fix/

https://cointelegraph.com/news/iron-finance-bank-run-stings-investors-a-lesson-for-all-stabl

ecoins

What is an Automated Market Maker AKA Decentralized Exchanges

I have 1 bitcoin. I want to swap my bitcoin for 1 bitcoin worth of ethereum. I could deposit my

bitcoin on a centralized exchange (covered later) and swap it just like selling 1 Apple stock and

buying Tesla stock on a traditional stock exchange. These exchanges follow an order book model. I

post an order to sell X Bitcoin for Y Ethereum (or Z USDC, N Dogecoin, etc.) and a counterparty with

https://twitter.com/0xmebius https://github.com/0xmebius

https://tether.to/
https://www.circle.com/en/usdc
https://coinmarketcap.com/view/stablecoin/
https://www.bloomberg.com/news/features/2021-10-07/crypto-mystery-where-s-the-69-billion-backing-the-stablecoin-tether
https://medium.com/mycrypto/what-is-dai-and-how-does-it-work-742d09ba25d6
https://makerdao.com/en/
https://makerdao.com/en/whitepaper/
https://docs.makerdao.com/
https://www.liquity.org/
https://docs.liquity.org/
https://cryptobriefing.com/algorithmic-stablecoin-crashes-50-devs-scramble-fix/
https://cointelegraph.com/news/iron-finance-bank-run-stings-investors-a-lesson-for-all-stablecoins
https://cointelegraph.com/news/iron-finance-bank-run-stings-investors-a-lesson-for-all-stablecoins
https://twitter.com/0xmebius


12/10/2021

a matching buy order for X Bitcoin will fill that order. This works great on high speed centralized

systems but falls apart very quickly on decentralized networks where transactions can only get

executed every ~15 seconds. Imagine trying to implement a system meant to match thousands of

orders a second on a decentralized computing network only capable of executing ~150 transactions

every 15 seconds and having each transaction cost ~$50-$300.

Obviously we need a new system to exchange assets given the computational limits of blockchains.

Read this:

https://www.coindesk.com/learn/2021/08/20/what-is-an-automated-market-maker/

A look at Uniswap V2. The OG AMM

Understand Everything:

https://uniswap.org/whitepaper.pdf

Developer Docs:

https://docs.uniswap.org/protocol/V2/concepts/protocol-overview/how-uniswap-works

https://github.com/Uniswap/v2-core

Uniswap V3

(Optional)

Uniswap V3 introduces significantly more complexity to the previous AMM paradigm with the

aim of increasing capital efficiency and reducing price impact of large trades.

Understand Everything:

https://uniswap.org/whitepaper-v3.pdf

Developer Docs:

https://docs.uniswap.org/protocol/introduction

https://github.com/Uniswap/v3-core

What is Curve

(Optional)

Curve can be best summarized as Uniswap V2, with more hard math to reduce slippage.

Curve is an AMM primarily meant to swap assets of similar value. Curve’s most liquid pool is

3CRV which consists of USDC, USDT and DAI. Curve’s pricing formula allows significantly

better pricing for large swaps from one stablecoin to another with reduced price impact

compared to using something like Uniswap.

Understand Everything:

https://curve.fi/files/stableswap-paper.pdf

https://twitter.com/0xmebius https://github.com/0xmebius

https://www.coindesk.com/learn/2021/08/20/what-is-an-automated-market-maker/
https://uniswap.org/whitepaper.pdf
https://docs.uniswap.org/protocol/V2/concepts/protocol-overview/how-uniswap-works
https://github.com/Uniswap/v2-core
https://uniswap.org/
https://uniswap.org/whitepaper-v3.pdf
https://docs.uniswap.org/protocol/introduction
https://github.com/Uniswap/v3-core
https://curve.fi/
https://curve.fi/files/stableswap-paper.pdf
https://twitter.com/0xmebius


12/10/2021

https://curve.fi/files/crypto-pools-paper.pdf

Developer Docs:

https://curve.readthedocs.io/

https://github.com/curvefi/curve-contract

Decentralized Bank

A traditional bank allows you to deposit money and take out loans. Decentralized banks are just like

that. I can deposit a variety of cryptocurrencies (Bitcoin, Ethereum, USDC, USDT, etc.) and earn

interest on my deposits. The interest is typically algorithmically controlled (i.e., if there are a lot

of people borrowing bitcoin, I’ll earn a higher interest rate by depositing bitcoin compared to

depositing USDC). Similarly, I can also take out loans against my deposits. If I deposit 10,000 USDC,

(depending on the protocol parameters) I can take out a loan of $9000 worth of Ethereum.

AAVE

Intro:

https://decrypt.co/resources/what-is-aave-inside-the-defi-lending-protocol

Understand Everything:

https://github.com/aave/protocol-v2/blob/master/aave-v2-whitepaper.pdf

Developer Docs:

https://docs.aave.com/developers/

https://github.com/aave/aave-protocol

Compound

(Optional)

Compound is similar to AAVE. Read this if you want to see a slightly different

implementation but much of the core concepts remain the same.

Understand Everything:

https://compound.finance/documents/Compound.Whitepaper.pdf

Developer Docs:

https://compound.finance/docs

https://github.com/compound-finance/compound-protocol

Liquity/Maker Dai

The lines between Decentralized Lending Banks/Protocols and Decentralized Stablecoins get

a little blurry. Both systems fundamentally allow you to deposit assets and take out a loan

against these assets. The key difference is decentralized stablecoin protocols have the ability

to mint new stablecoins out of thin air while lending protocols require other depositors to

deposit assets before you are able to borrow them.

https://twitter.com/0xmebius https://github.com/0xmebius

https://curve.fi/files/crypto-pools-paper.pdf
https://curve.readthedocs.io/
https://github.com/curvefi/curve-contract
https://decrypt.co/resources/what-is-aave-inside-the-defi-lending-protocol
https://github.com/aave/protocol-v2/blob/master/aave-v2-whitepaper.pdf
https://docs.aave.com/developers/
https://github.com/aave/aave-protocol
https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/docs
https://github.com/compound-finance/compound-protocol
https://twitter.com/0xmebius


12/10/2021

Oracles

Blockchain is a closed off distributed computer. It has no access to the rest of the World Wide Web.

This means you cannot natively make an api call, google something, or download files from a smart

contract living on Ethereum. Most importantly, you cannot even generate a cryptographically secure

random number within a smart contract. Thus the concept of Oracles were invented.

Introductions:

https://chain.link/education/blockchain-oracles

Developer Docs:

https://docs.chain.link/

Forks

The overwhelming majority of blockchain code is open-sourced. To clarify, every piece of smart

contract code on the blockchain is publicly accessible. However, the code that exists on the

blockchain is effectively a compiled binary and is hard to read and understand. Most projects often

post the original precompiled source code on GitHub so users, developers and auditors can verify it’s

security and legitimacy. This naturally makes it quite trivial for someone to copy and paste existing

protocols and smart contracts and deploy them as their own and that is exactly what happens. These

copy and pasted versions of protocols are commonly referred to as Forks. Forks have varying degrees

of modifications. They can copy and paste the exact code or they can create significant

modifications that add new features or security improvements (and unintentional security flaws

too).

You might ask why anyone would use a fork rather than an original protocol. Oftentimes, forks

employ various strategies to bring users and liquidity to their protocol. The most common strategy

is called a Vampire Attack in which the fork offers users better rewards, fee rates, etc. to

incentivize them to migrate.

SushiSwap was a copy and paste fork of Uniswap V2 that brilliantly executed a vampire attack on

Uniswap V2 and is one of the most successful forks to date.

Read more here:

https://www.gemini.com/cryptopedia/sushiswap-uniswap-vampire-attack

https://finematics.com/vampire-attack-sushiswap-explained/

Centralized Exchanges

Centralized Exchanges are venues in which users can trade assets through a corporation’s internalized

system. Think of it like a stock exchange but for crypto. That’s literally all it is. Centralized Exchanges are

notably different that Decentralized Exchanges for a number of reasons:

1. Almost all Centralized Exchanges now require you to KYC (Know Your Customer) due to a

tightening of regulatory requirements. This typically involves providing sensitive personal

information like your full name, address, SSN, passport, etc. Centralized Exchanges may also block

https://twitter.com/0xmebius https://github.com/0xmebius

https://chain.link/education/blockchain-oracles
https://docs.chain.link/
https://www.gemini.com/cryptopedia/sushiswap-uniswap-vampire-attack
https://finematics.com/vampire-attack-sushiswap-explained/
https://twitter.com/0xmebius


12/10/2021

users in certain geographical areas due to regulatory requirements. (Binance blocks all US based

users for example). Decentralized Exchanges have no such requirements.

2. Centralized Exchanges custody the assets you wish to trade with. This means to trade, you have

to send your cryptocurrency to the exchange’s own wallet. This has a number of implications, most

importantly security. If the Centralized Exchange gets hacked, you have no recourse. This is not like

the stock market where you can always undo a transaction that was proven to be

malicious/illegal/unauthorized. The blockchain does not care whether or not the transaction was

unintentional. If the transaction was signed with the valid private key, it will be executed, accepted

and immutably recorded on the blockchain. Hacks happen a lot:

https://www.wired.com/2014/03/bitcoin-exchange/

3. Centralized Exchanges have costs associated with withdrawing or depositing assets. If you make

a trade on Uniswap, immediately after the trade, your wallet will contain the assets you just

purchased. In contrast, centralized exchanges have varying wait times if you wish to withdraw your

assets after making a trade. In the absolute best case it’ll take ~5min for you to initiate the

withdrawal request, have the exchange process the request and send your assets to the indicated

wallet. In the worst case (especially if you’re doing a large transfer), exchanges may require

additional verification, waiting periods for bank funds to settle (if you paid with fiat), or even

delays in the event there is insufficient liquidity and the exchange has to unlock funds stored in cold

wallets. Furthermore some exchanges may charge withdrawal and deposit fees in addition to the gas

fees you pay for the on chain transfer.

There are a lot of centralized exchanges with varying degrees of regulatory compliance, security and user

experience. Some top exchanges by reputation and volume:

https://www.coinbase.com/

https://www.binance.com/en

https://www.kraken.com/

https://www.gemini.com/

MEV

Now that you’ve developed a basic understanding of some of the lego pieces in the blockchain ecosystem

it’s time to dive into the world of MEV. MEV, Maximal Extractable Value/Miner Extractable Value is basically

any automated interaction you can do on the blockchain that has positive expected value. Importantly, it is

not speculating on the prices of assets, YOLOing into a ponzi-esque yield farming protocol or any sort of

traditional investment strategy. One kind of accurate way to think about it: MEV is to DeFi what HFT is to

the stock market.

Introduction:

https://ethereum.org/en/developers/docs/mev/

https://research.paradigm.xyz/MEV

The OG Flashboys 2.0 (Hard. Required if you want to build something. Seriously. Read it first):

https://arxiv.org/pdf/1904.05234.pdf

Very Very Fun Reads (Not hard. Just insightful):

https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest/

https://twitter.com/0xmebius https://github.com/0xmebius

https://www.wired.com/2014/03/bitcoin-exchange/
https://www.coinbase.com/
https://www.binance.com/en
https://www.kraken.com/
https://www.gemini.com/
https://ethereum.org/en/developers/docs/mev/
https://research.paradigm.xyz/MEV
https://arxiv.org/pdf/1904.05234.pdf
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest/
https://twitter.com/0xmebius


12/10/2021

https://samczsun.com/escaping-the-dark-forest/

https://rekt.news/return-to-the-dark-forest/

MEV Strats 101

MEV strategies basically consist of a set of on-chain interactions with the goal of ending up with

more money than you started with by the end of the execution sequence.

Sandwiching

Sandwiches are the most notorious form of MEV. They are the blockchain equivalent to the

frontrunning strategies employed by HFT firms laid out in Michael Lewis’s Flash Boys. At its

core a sandwich exploits the existence of pending transactions waiting to be confirmed on

the blockchain. If you see a pending order to buy 100,000 USDC worth of Ethereum through

Uniswap, the logical conclusion is that the price of Ethereum will go up after that

transaction has been executed. You want to buy Ethereum immediately before the targeted

transaction has been executed and then immediately sell that same Ethereum right after the

target transaction executed.

In practice, you can use the pricing formulas detailed in the Uniswap whitepapers to

calculate the *exact* price impact that any order will have on a trading pair. This is a crucial

advantage that sandwich attacks have over tradfi frontrunning where slippage is a

probabilistic calculation. The deterministic nature of each individual trade on decentralized

exchanges allows you to derive and calculate optimal trade sizes to frontrun a purchase

with, allowing you to extract the globally maximal profit from any sandwich attack.

Learn more here:

https://medium.com/coinmonks/defi-sandwich-attack-explain-776f6f43b2fd

A quick ethics tangent: Sandwich attacks are typically excoriated within the DeFi space and

viewed as negative externality. There are two ways to look at Sandwich Attacks. The Bad Way

and the Good Way.

The Bad Way views sandwich attacks as a purely exploitive strategy that preys upon

uninformed retail users who don’t fully understand the underlying network dynamics of

blockchain and the implications of the slippage parameters they set when making a trade.

The most brutal sandwich attacks often occur when a user YOLOs into a newly launched

shitcoin and through a desire to be one of the first buyers of the coin set slippage to

absurdly high values (sometimes as high as 99%) inevitably resulting in them receiving exactly

their minimum specified output amount — this amount is an order of magnitude lower than

they otherwise would have received in the absence of a sandwich attack.

The Good Way views the entirety of this set of interactions through the lens of economic

efficiency. When a user submits a swap, they effectively declare their maximum willingness

to pay through the parameter minOutput/maxInput. If their order fills at a more favorable

https://twitter.com/0xmebius https://github.com/0xmebius

https://samczsun.com/escaping-the-dark-forest/
https://rekt.news/return-to-the-dark-forest/
https://en.wikipedia.org/wiki/Flash_Boys
https://medium.com/coinmonks/defi-sandwich-attack-explain-776f6f43b2fd
https://twitter.com/0xmebius


12/10/2021

price than the declared WTP, it implies the existence of a consumer surplus and consequently

the absence of a Nash Equilibrium. A third party, the sandwich bot operator, moves the

economic system towards the Nash Equilibrium such that the market meets the consumer’s

maximum WTP while also extracting value for the operator. In doing so, the sandwich bot has

generated more global utility and reached the Nash Equilibrium where no other action would

produce additional utility given the current state of the system and the declared economic

preferences of all agents involved.

Both ways are reasonable positions to view sandwich attacks and in truth the reality likely

lies somewhere along the spectrum of the Good Way and the Bad Way. A couple parting

thoughts to ponder:

● Sandwich attacks will always exist. If you don’t run a bot, someone else will

● This practice is widespread in the equities market and an accepted dynamic

○ Frontrunning as referenced in Flashboys still occurs to this day

○ A novel trade mechanism called Payment for Order Flow (PFOF) has enabled

retail brokerages to offer no-fee trades by routing orders through market

makers like Citadel. These market makers pay brokerages for retail order flow

since they don’t face the same degree of adverse selection they otherwise

would when trading against informed counterparties on the public stock

exchange

○ The effects of HFT practices in equities are far more opaque due to the

existence of Dark Pools, the centralized nature of equity markets and

complexity of equity market architectures

Arbitrage

Arbitrage involves buying an asset at a discount on one venue and simultaneously selling it at

a different venue for a higher price. Arbitrage is a mechanism to make markets efficient and

reduces price discrepancies of assets across different venues.

Read more here:

https://www.coindesk.com/learn/crypto-arbitrage-trading-how-to-make-low-risk-gains/

There are many many different flavors of arbitrage. Some are absolutely considered to be

MEV while others incorporate more traditional financial strategies:

Atomic Arbitrage

If you paid attention to the smart contracts section you should know that smart contracts

allow you to package a series of on chain interactions, sequentially execute them, and at the

end of execution, check for a set of conditions. If the conditions are not met, the smart

contract can force the execution to fail effectively undoing all the on chain interactions that

just occurred.

The implications of this mechanism are enormous. In traditional forex arbitrage, when you

execute a multi hop arbitrage, you run the risk that the market moves against your position

while you are halfway through your arbitrage forcing you to sell at a loss to return to your

https://twitter.com/0xmebius https://github.com/0xmebius

https://www.bloomberg.com/opinion/articles/2021-12-08/what-does-payment-for-order-flow-buy
https://www.coindesk.com/learn/crypto-arbitrage-trading-how-to-make-low-risk-gains/
https://twitter.com/0xmebius


12/10/2021

original denominated currency. With the existence of atomic execution, not only will every

leg of your hop be guaranteed to execute one after another with no race conditions

(Ethereum is a singular global state machine that can only process transactions sequentially),

but your smart contract code can record your initial starting balance, and at the end of

execution can assert startingBalance<endBalance. If the assertion fails, the smart contract

will revert the execution, undoing all the trades made in the function call and leaving you

with your starting balance.

This ability to revert a smart contract function call essentially makes this arbitrage strategy

riskless in theory. There are some caveats to this “riskless” assertion that will be covered

later.

Furthermore, the existence of atomic execution brings about novel economic mechanisms

that were impossible to implement in the traditional computing paradigm. Namely flashloans

and flashswaps. DeFi protocols such as Uniswap and AAVE consist of smart contracts that hold

billions of dollars in capital. Traditionally, loans had to be secured with collateral, otherwise

the borrower could just run off with the money with little recourse for the lender. With

atomic execution however, the borrower’s smart contract could request a loan by calling a

function in the protocol’s smart contract. Within the same execution context, the protocol’s

smart contract will optimistically provide the loan to the borrower, then call a predefined

function in the borrower’s smart contract letting it know the loan has been provided. The

borrower’s predefined function will execute and at the end of execution return the loaned

assets (plus a fee) back to the protocol’s smart contract. The protocol’s smart contract

function that was initially called, providing the loan and calling the borrower’s smart

contract will execute a check when the borrower’s function finishes execution that the

loaned amount + fee has been returned. If the loan has not been returned, the check will fail

and the entire chain of interactions (the borrowing contract’s function executions & the

initial transfer of the loan to the borrower) will revert/rollback to the initial state as if

nothing had happened.

This concept of flashloans is arguably one of the hardest concepts to grasp in the space and

requires a fundamental shift in understanding how programmable logic is executed on the

blockchain compared to traditional computing.

It’s crucial you understand this concept as it affords an unprecedented level of flexibility in

many DeFi interactions. Let’s tie this concept back to the atomic arbitrage strategy just

described. Suppose you identify a triangular arbitrage opportunity that had a globally

optimal input trade size of $1 million (recall that trades have price impact. If you execute an

arbitrage with greater than the optimal amount, the price impact of your own trade will eat

into the profits). If you only had $1,000 of capital available, you could only execute the

arbitrage with your $1,000 — which might not even be profitable after paying for all the gas

fees for your transaction to execute. With flashloans you could initiate your arbitrage by

taking out a loan of $1 million, execute your triangular arbitrage, pay back the loan and keep

all the arbitrage profits for yourself.

This mechanism allows for an incredible level of democratization in MEV strategies. Capital

intensive strategies that were previously only accessible to those with access to large

https://twitter.com/0xmebius https://github.com/0xmebius

https://twitter.com/0xmebius


12/10/2021

amounts of capital are now accessible to individuals who could wield an almost unbounded

amount of capital by sourcing it through DeFi protocols that provide flashloans.

AAVE Flashloan:

https://docs.aave.com/faq/flash-loans

Uniswap Flashswap (Flashswaps allow you to borrow an asset and pay back the equivalent

value denominated in a different currency which saves an extra hop):

https://docs.uniswap.org/protocol/V2/guides/smart-contract-integration/using-flash-swaps

Cross Centralized Exchange Arbitrage

Cross exchange arbitrage is closer to the traditionally employed forex arbitrage strategies. It

involves making simultaneous buy and sell orders of the same asset across different

exchanges both centralized and decentralized. Because centralized exchanges do not allow

you to deposit, trade, and withdraw all in a single on chain transaction, atomic execution is

not possible. Furthermore, the fees and delays associated with constantly depositing and

withdrawing from centralized exchanges will inevitably force you to leave an inventory of

assets across a variety of exchanges to trade against. If Ethereum is $3,900 on Coinbase but

$4,000 on Binance, by the time you are able to withdraw the Ethereum you bought on

Coinbase and deposit it into Binance, the arbitrage opportunity will be gone. Instead, you’ll

have to maintain a balance of Ethereum and Cash on both exchanges so you are able to

immediately buy Ethereum on Coinbase and sell the Ethereum held on Binance without

having to deposit or withdraw.

This forces you to engage in more traditional financial modeling and properly manage

inventory risk of the assets you hold across all venues. This strategy is quite capital intensive

due to the absence of flashloans.

A cool tool commonly used for this type of strategy:

https://hummingbot.io/

Hybrids

There exist a variety of Arbitrage strategies that utilize both on chain and centralized

exchanges. Common hybrids involve integrating decentralized exchanges into the Cross

Exchange Arbitrage and executing buy-sell arbitrage with inventory held in an on chain

wallet. This is a strategy dominated by a specific searcher:

https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf

You can observe just through the sheer volume of one sided buy/sell orders made on chain

that this wallet is likely executing corresponding orders on other venues.

Another common strategy is to implement the cross exchange arbitrage across different

blockchains. For example, a decentralized exchange on the Ethereum blockchain might have

differing prices of assets than a decentralized exchange on the Polygon Network (an

Ethereum-like blockchain).

https://twitter.com/0xmebius https://github.com/0xmebius

https://docs.aave.com/faq/flash-loans
https://docs.uniswap.org/protocol/V2/guides/smart-contract-integration/using-flash-swaps
https://hummingbot.io/
https://etherscan.io/address/0xa57bd00134b2850b2a1c55860c9e9ea100fdd6cf
https://twitter.com/0xmebius


12/10/2021

Liquidations

DeFi Lending Protocols consist of a user borrowing assets against deposited collateral. What

happens if the value of deposited collateral drops sharply? How do DeFi protocols ensure

outstanding loans are always fully backed by collateral?

When a user takes out a loan, the loan is always overcollateralized (i.e., the value of

collateral exceeds the value of the loan). However in the event the value of the collateral

drops below a certain threshold (anywhere from 110% of the loan value to 300%), the DeFi

protocol allows anyone to liquidate the loan position to maintain system solvency. To

incentivize liquidations, protocols will often pay a flat fee and/or allow the liquidator to

keep a cut of the collateral being liquidated.

Liquidations are always initiated by a smart contract function call to the DeFi protocol. The

liquidator needs to repay some or all of the loaned amount at which point the protocol will

transfer the borrower’s deposited collateral to the liquidator (and sometimes an additional

flat fee). The value of the deposited collateral should always be greater than the value of

the loan (otherwise there would be no economic incentive to liquidate a loan).

While you can liquidate a loan by just repaying the debt from your wallet, it’ll be quite

capital intensive (you’d need $1 million to liquidate a $1 million loan) and you’ll expose

yourself to losses should the value of the collateral you receive continues to drop. You can

instead leverage flash loans to front the necessary capital to liquidate a position, sell all

received collateral and repay the flashloan while keeping the extra profit for yourself.

AAVE Liquidation Docs:

https://docs.aave.com/faq/liquidations

Generalized Frontrunning

When transactions are submitted to the blockchain, a node propagates the transaction to

other nodes through a p2p gossiping mechanism. This means there will always be a non-zero

amount of time between the time of submission and when the transaction is immutably

confirmed on the blockchain. Now recall that Ethereum is effectively a publicly accessible

state machine and each transaction represents a state change upon the global state. This

means every single publicly broadcast unconfirmed transaction can be simulated upon the

present state. A simple generalized frontrunner will simulate every unconfirmed transaction

and observe the resulting state change. If it observes a net increase in balance by the

initiating wallet of a certain transaction, it will attempt to replicate that exact transaction

by copying all relevant transaction fields (where the transaction is being sent, data fields,

gas values, etc.) and simulate its own replicated transaction on the global state. If it

observes that it’s own balance has increased after simulation, it will attempt to frontrun the

original transaction by submitting its replicated transaction with a higher gas price.

In doing so, generalized frontrunners are able to capture arbitrary opportunities solely by

mimicking the original sender’s behavior and getting there first.

https://twitter.com/0xmebius https://github.com/0xmebius

https://docs.aave.com/faq/liquidations
https://twitter.com/0xmebius


12/10/2021

There is obviously more complexity to the generalized frontrunner active today. Advanced

techniques include fuzzing of relevant transaction fields, even going as far as identifying and

replacing mentions of the wallet address in call data or tracing smart contract interactions

to identify specific subcalls within a transaction’s execution that would result in a net

balance increase.

Read the “Very Very Fun Reads” section to see some generalized frontrunners in action

Just In Time (JIT) Liquidity

Prerequisite: Read Uniswap V3

Uniswap V3 allows liquidity providers to specify a range of prices that their liquidity is active

for. This allows for greater capital efficiency, if you expect the value of two tokens in a

Uniswap V3 to stay relatively correlated, you can set a tighter range and receive a larger

share of the transaction fees for swaps that occur within your specified range.

Depending on how tight you set the liquidity range, your share of fees may be many many

orders of magnitude greater than setting a wider tick range. However, the tighter you set

your tick range, the greater your risk of impermanence loss is, and the greater the likelihood

that the price of the asset pair will move out of your tick range due to general volatility.

When the price of the pair moves outside of your tick range, you generate no fees.

Now suppose you identify a large pending buy order of $10 million USDC for ETH on Uniswap

V3. Let’s say the fee rate for this pair is 0.3%. That means this order will generate $30,000 in

transaction fees to be paid to liquidity providers. If you fortran this order and submitted a

transaction to provide $10 million dollars of liquidity at the tightest possible price range,

your liquidity position would receive a disproportionately greater share of fee revenue than

all other liquidity providers who provide liquidity for a wider range of prices. You could then

immediately remove liquidity after this order.

Through this, you’re able to capture most of the fees generated by large orders without

facing any of the risks that providing liquidity to AMMs incur over a longer time horizon.

Obviously due to the non-atomic nature of this strategy, it’s quite capital intensive.

Read more here:

https://twitter.com/ChainsightA/status/1457958811243778052?s=20

Long Tail

Sandwiches, Arbitrage and Liquidations make up the overwhelming majority of MEV

extracted. Coupled with the fact that all the aforementioned strategies are widely known,

they are incredibly competitive. If you are reading this, attempting to productionize any of

these strategies will likely be a futile exercise as experienced searchers have already

implemented hyper optimized versions of this strategy. Let me emphasize. You will always be

playing catch up.

https://twitter.com/0xmebius https://github.com/0xmebius

https://twitter.com/ChainsightA/status/1457958811243778052?s=20
https://twitter.com/0xmebius


12/10/2021

Long Tail MEV encompasses all other forms of MEV not described here. Long Tail MEV

describes niche, arcane, undiscovered MEV often realized through interacting with lesser

known protocols, event based strategies, or unorthodox economic mechanisms.

Searching for Long Tail MEV will likely be the most fruitful use of your time, but by its very

nature will require significant exploration and understanding of the DeFi space.

One such example:

https://twitter.com/ChainsightA/status/1460824051010744327?s=20

Examples

Now that you have a good understanding on the basics of MEV, let’s go over some examples:

An incredibly well written walkthrough of what the process from start to finish looks like

https://bertcmiller.com/2021/09/05/mev-synthetix.html

Productionized Liquidator Bot:

https://github.com/haydenshively/New-Bedford

Rari’s Liquidator Bot:

https://github.com/Rari-Capital/fuse-liquidator-bot

Flashbot’s Beginner Arbitrage Bot:

https://github.com/flashbots/simple-arbitrage

PGAs

Covered in Flashboys 2.0 mentioned above. Just read it.

Priority Gas Auctions occur when two or more searchers identify the same MEV opportunity and

enter into a gas bidding war to capture the opportunity first. PGA’s were commonplace in early MEV

strategies on Ethereum leading significant amounts of spam and reverting transactions while

congesting the overall network. The creation of Flashbots (covered next) eliminated the

overwhelmingly majority of PGAs on Ethereum. However, PGA strategies have seen a resurgence

with the deployment of many new EVM compatible chains that offer lower fees and lower block

times.

Flashbots

What’s Flashbots:

https://medium.com/flashbots/frontrunning-the-mev-crisis-40629a613752

Flashbots brought about a paradigm shift for MEV strategies on Ethereum. Most notably,

multi-transaction atomicity and protection against reverts. Miners connected to Flashbots receive

Flashbot bundles to execute. Searchers who identify MEV opportunities can submit Flashbot bundles

to the relay. A Flashbot bundle is a list consisting of 1 or more Ethereum transactions. When a

https://twitter.com/0xmebius https://github.com/0xmebius

https://twitter.com/ChainsightA/status/1460824051010744327?s=20
https://bertcmiller.com/2021/09/05/mev-synthetix.html
https://github.com/haydenshively/New-Bedford
https://github.com/Rari-Capital/fuse-liquidator-bot
https://github.com/flashbots/simple-arbitrage
https://medium.com/flashbots/frontrunning-the-mev-crisis-40629a613752
https://twitter.com/0xmebius


12/10/2021

searcher identifies an MEV opportunity, rather than submitting a transaction to be broadcast

publicly through nodes, they submit the transaction to the Flashbot’s relay. The Flashbot relay

(after running through a series of checks) will then forward the transaction directly to the miner

bypassing the p2p gossip process.

A couple key points

● If a transaction submitted to the relay reverts/fails it will not land on chain. Flashbots

ensures every bundle it receives is successfully executed on chain or not at all

● Bundles allow searchers to specify more granular transaction ordering preference. A bundle

containing transactions A,B,C will execute A,B,C in the exact order provided. If any of the

transactions revert, then none of A,B,C land on chain (unless reverts are explicitly allowed)

● Any valid transaction (properly formatted and signed) can be included in a bundle. Sandwich

attacks will include the targeted transaction in their bundle ensuring the corresponding buy

and sell transactions are place immediately before and after the targeted transaction

● Bundles sent to the relay indicate which block the bundle is valid for. This allows searchers

to precisely target a specific block N+1, N+2, etc. to execute their transaction for

● If two bundles conflict (have the same transactions, cause one or the other to revert, etc.),

the bundle with the highest effective gas price will execute.

Learn Everything Here:

https://docs.flashbots.net/

https://github.com/flashbots

Smart Contracts / Dev Tooling

If you’ve gone through the flashbot docs properly, you’ll quickly realize that gas efficiency is key to

winning an opportunity. You cannot successfully win a sandwich attack by simply making your buy

and sell swaps through the Uniswap Router contract. It is simply too gas intensive. Building a smart

contract for MEV is notably different than building a smart contract for a Dapp. An MEV smart

contract is stripped down to the bare minimum — prioritizing gas efficiency above all else (including

UX, readability, and sometimes even security).

A few guidelines:

● Any computation that can be done off chain must be done off chain

● Redundant variables need to be removed. Use things like msg.value, msg.sender for extra

data and strip your calldata to the minimum

● Interact with the minimum amount of contracts possible. For example, don’t swap through

the Uniswap router, call the swap() function on the pair directly.

● NEVER use storage. Access variables through memory and calldata only. Storage reads and

writes are excruciatingly expensive gas wise and are almost always unnecessary.

See recent flashbot bundles:

https://flashbots-explorer.marto.lol/

Some active MEV Bots:

https://etherscan.io/accounts/label/mev-bot

https://twitter.com/0xmebius https://github.com/0xmebius

https://docs.flashbots.net/flashbots-auction/searchers/advanced/bundle-pricing
https://docs.flashbots.net/
https://github.com/flashbots
https://flashbots-explorer.marto.lol/
https://etherscan.io/accounts/label/mev-bot
https://twitter.com/0xmebius


12/10/2021

MEV Job Board:

https://github.com/flashbots/mev-job-board

Decode and Analyze Transactions:

https://etherscan.io/

https://ethtx.info/

Web3 Libraries for your Backend:

https://github.com/ethereum/web3.py

https://github.com/ChainSafe/web3.js

https://github.com/gakonst/ethers-rs

Test Your Contracts:

Mainstream (prevalent in Dapps):

https://eth-brownie.readthedocs.io/en/stable/

https://hardhat.org/

More suited for searchers:

https://dapp.tools/

https://github.com/gakonst/foundry

Run an Ethereum Node:

Flashbot Version of the most commonly used ethereum client

https://github.com/flashbots/mev-geth

Erigon, a highly efficient archival client capable of storing the entire blockchain locally (also provides

useful tracing functions):

https://github.com/ledgerwatch/erigon

Monitor your scripts/setup your cli quickly:

https://github.com/tmux/tmux

https://github.com/tmuxinator/tmuxinator

Game Theory / Social Dynamics / Security

This is the Flashbot’s discord: https://discord.gg/7hvTycdNcK

If you’re serious about building something, join it and spend a day reading through past messages. I

guarantee you a question you have will have been asked and (probably) answered in this discord.

The social dynamics among searchers are incredibly interesting and unique — a phenomena unlike

any other ecosystem in the world. It’s a contradictory mix of ruthless adversity and benevolent hand

holding that really can’t be found anywhere else.

Some basic tidbits:

● Everyone and I mean *everyone* will be trying to steal your money

○ I cannot emphasize this enough

○ If you write a vulnerable smart contract or run a vulnerable strategy and put money

into it. It will get exploited and taken. It’s not a question of if it’s a matter of when

https://twitter.com/0xmebius https://github.com/0xmebius

https://github.com/flashbots/mev-job-board
https://etherscan.io/
https://ethtx.info/
https://github.com/ethereum/web3.py
https://github.com/ChainSafe/web3.js
https://github.com/gakonst/ethers-rs
https://eth-brownie.readthedocs.io/en/stable/
https://hardhat.org/
https://dapp.tools/
https://github.com/gakonst/foundry
https://github.com/flashbots/mev-geth
https://github.com/ledgerwatch/erigon
https://github.com/tmux/tmux
https://github.com/tmuxinator/tmuxinator
https://discord.gg/7hvTycdNcK
https://twitter.com/0xmebius


12/10/2021

○ https://github.com/Defi-Cartel/salmonella

○ https://twitter.com/bertcmiller/status/1381296074086830091

○ https://twitter.com/bertcmiller/status/1446416008709918732

○ https://twitter.com/qiushui777/status/1450656352292925441

● When a searcher steals your money, sometimes they’re nice and give some, most, or even all

of it back

○ Yeah, it’s weird. I know. Especially since most of the time they can take it with little

consequence

○ When my smart contract got exploited in this attack, the searcher who executed the

exploit reached out and gave some of it back. It’s pretty common.

○ https://twitter.com/bertcmiller/status/1448063805695696902

● It’s kinda ok to steal another searcher’s money?????

○ The main overarching rationalization is vulnerabilities are often a result of insane gas

optimizations

○ By stripping your code down and removing as much of the overhead that built in

safeguards incur, you’ve made your bot an order of magnitude more competitive

○ If you leave your optimized contract vulnerable, you’re essentially accepting that the

risk of an exploit outweighs the competitive advantage of your newly optimized code

● Searchers throw tantrums when other searchers leak alpha

○ For hopefully obvious reasons

○ Most MEV is winner take all, there’s really no room for sharing

● Crypto Twitter (specifically the MEV niche, not the degen ponzi scheme niche) is the best way

to stay up to date on the latest developments. Some good accounts to follow:

https://twitter.com/0xmebius/following

● Just a good read:

https://twitter.com/0xmebius https://github.com/0xmebius

https://github.com/Defi-Cartel/salmonella
https://twitter.com/bertcmiller/status/1381296074086830091
https://twitter.com/bertcmiller/status/1446416008709918732
https://twitter.com/qiushui777/status/1450656352292925441
https://twitter.com/bertcmiller/status/1443531579683442692
https://twitter.com/bertcmiller/status/1448063805695696902
https://twitter.com/0xmebius/following
https://twitter.com/0xmebius


12/10/2021

https://twitter.com/bertcmiller/status/1402665992422047747

Alpha Leaks

Now that you’ve learned most of what is publicly available about MEV let’s share some secrets —

stuff you either can’t find elsewhere or are buried deep in arcane forums. Here are a few hacks and

efficiency optimizations you can use to get a head start.

ERC-20 Hacks

● If you need to do ERC-20 transfers, just keep the balance in the smart contract and call

transfer(). Trying to do an approve, transferFrom regimen with an EOA holding the coins is

useless and isn’t actually any more secure

● When your smart contract does an ERC-20 transfer, always leave 1 unit of the smallest

denomination of the token in your smart contract balance. It’ll save gas the next time you

interact with the token

Uniswap Hacks

● When calling swap() for a multihop arbitrage, set the ‘to’ field to the address of the next

Uniswap pair in your arbitrage hop. This avoids having to transfer the received tokens from

your smart contract address to the next pair on every hop

Calldata Hacks

● Let’s say you need the number 8458 passed into your smart contract. Rather than having an

extra uint argument in your function parameter, send 8458 wei to the smart contract when

calling it. You’ll be able to access the value 8458 as the variable msg.value. Obviously this

only works for numbers of small magnitude. You don’t really want to have to send massive

amounts ether to your contract but 8458 wei is an infinitesimal amount to send

● Pack your calldata. Normally, each argument in your calldata will be padded with leading 0s

by the abiEncode function. This means you’ll often end up with extra 0s in your calldata that

do nothing other than pad. Extra bytes mean extra gas. If you get your hands a bit dirty using

inline assembly, you can bypass solidity’s standard abi decoder for calldata and just slice the

calldata bytearray yourself:

https://gist.github.com/0xmebius/f161abff38b88c9005db31d47e39bbe0

Leading 0s

● Ever wonder why a lot of MEV bots have a ton of leading 0s in the contract address? The TLDR

is 0 byte calldata is marginally more gas efficient than non zero call data

● https://medium.com/coinmonks/on-efficient-ethereum-addresses-3fef0596e263

● https://ethereum.stackexchange.com/questions/101311/how-much-gas-do-0x00000000-addre

sses-and-0x00000000-methods-really-save

● Mine leading 0 EOAs and contract addresses:

https://github.com/johguse/profanity

https://twitter.com/0xmebius https://github.com/0xmebius

https://twitter.com/bertcmiller/status/1402665992422047747
https://docs.uniswap.org/protocol/V2/reference/smart-contracts/pair#swap-1
https://docs.soliditylang.org/en/v0.5.3/abi-spec.html
https://gist.github.com/0xmebius/f161abff38b88c9005db31d47e39bbe0
https://medium.com/coinmonks/on-efficient-ethereum-addresses-3fef0596e263
https://ethereum.stackexchange.com/questions/101311/how-much-gas-do-0x00000000-addresses-and-0x00000000-methods-really-save
https://ethereum.stackexchange.com/questions/101311/how-much-gas-do-0x00000000-addresses-and-0x00000000-methods-really-save
https://github.com/johguse/profanity
https://twitter.com/0xmebius


12/10/2021

● Another leading 0 hack. When you define a function foo(uint x), the function signature (the

first 4 bytes of your transaction calldata used to select which function you are calling) will be

the first 4 bytes of Keccak-256 hash of foo(uint x). You can brute force various function names

so that Keccak256(FUNCTIONNAME(uint x))[:4] == 0x0000. This saves some gas since 0 byte

calldata is slightly cheaper than non zero byte calldata

https://github.com/fxfactorial/cheap-name-

Ephemeral Smart Contracts

● Ever wonder why you see top MEV bots like this have the contract tagged with ReInit?

● What if I told you smart contracts, when deployed in a specific manner, are completely

mutable? No proxies, no delegatecalls, just a pure editable smart contract

● Why would you want to edit an existing smart contract rather than redeploy?

○ If you already have a bunch of ERC-20 token balances, you can continue to benefit

from the gas savings without having to reinitialize a bunch of storage slots

○ If you’ve mined a leading 0 smart contract address, redeploying means having to

remine a new leading 0 address. This way, you can redeploy to the exact same address

without having to spend weeks waiting for a new one

● By taking advantage of 2 low level operations, CREATE2 and SELFDESTRUCT, exposed in the

EVM, you can deploy a smart contract, self destruct, and redeploy to the exact same address

● So how does this work? Best explained by libevm:

https://twitter.com/libevm/status/1468390867996086275?s=20

● Here is one way you can setup the contract deployment (credit: @cupidhack):

https://twitter.com/0xmebius https://github.com/0xmebius

https://github.com/fxfactorial/cheap-name-
https://etherscan.io/address/0x00000000b7ca7e12dcc72290d1fe47b2ef14c607
https://twitter.com/libevm/status/1468390867996086275?s=20
https://twitter.com/cupidhack
https://twitter.com/0xmebius


12/10/2021

● Here’s how you implement it:

https://github.com/0age/metamorphic

https://github.com/johguse/ERADICATE2

Get Information

● Check the flashbots explorer every hour on the hour for event based MEV opportunities

opportunities

● Batch on-chain queries using multicall contracts:

https://github.com/indexed-finance/multicall

● If you need to access storage slots on chain, use geth’s graphql endpoint

Inspired by @libevm: https://twitter.com/libevm/status/1467376978697211904

Flash Loans and Multicall

● You’ll reach a certain point where you realize that certain MEV strategies will require a lot of

modularity

● For example, a general atomic arbitrage strategy might make anywhere from 2-N hops across

different pairs. You could just write N-1 functions for each hop. But what if one of the pairs

you’re hopping through has a slightly different function signature. Say swapToken() instead of

swap()? Then you’ll have to write separate functions that call different function signatures

and you’ll end up with a massive headache not to mention the gas costs associated with

deploying a bloated contract.

● Wouldn’t it be easier if you could just parameterize every subcall you want to have executed.

Kind of like a batch proxy? That’s what multicall contracts do:

https://github.com/makerdao/multicall

https://twitter.com/0xmebius https://github.com/0xmebius

https://github.com/0age/metamorphic
https://github.com/johguse/ERADICATE2
https://github.com/indexed-finance/multicall
https://eips.ethereum.org/EIPS/eip-1767
https://twitter.com/libevm
https://twitter.com/libevm/status/1467376978697211904
https://github.com/makerdao/multicall
https://twitter.com/0xmebius


12/10/2021

● This would be a good time to brush up on what delegatecall and call do:

https://ethereum.stackexchange.com/questions/3667/difference-between-call-callcode-and-

delegatecall

● Ok now that we can parameterize subcalls, how do we deal with flashloans? Recall that

flashloans result in the loan provider calling back to your contract through a specific function

signature.

For Uniswap V2 it’s:

For Uniswap V3 it’s:

For AAVE it’s:

Now you could just add 3 separate functions with the same logic, just different selectors in your

multicall contract but this breaks the modularity of the smart contract. Let’s revisit some of our

solidity, specifically the fallback function. A fallback function is called whenever a smart contract is

called and the selector doesn’t match any of the existing function selectors. It’s basically a catch all.

Now you can receive generalized flashloans simply by putting all the flashloan logic in the fallback

function. Be warned there are serious security vulnerabilities that will need to be patched to make

this function safe to expose. This will be left as an exercise to the reader :)

LEARN RUST

Rust is a high performance language that is now gaining significant traction both in the MEV

community as well as the general software development industry. Rust offers the speed and low

level interactions afforded by C but without the additional development overhead of worrying as

much about memory allocation and garbage collection issues. It’s also used as the base language for

smart contracts on newer, high performance chains like Solana, Polkadot, Avalanche, etc.

Read:

https://doc.rust-lang.org/book/

https://twitter.com/0xmebius https://github.com/0xmebius

https://ethereum.stackexchange.com/questions/3667/difference-between-call-callcode-and-delegatecall
https://ethereum.stackexchange.com/questions/3667/difference-between-call-callcode-and-delegatecall
https://docs.uniswap.org/protocol/V2/guides/smart-contract-integration/using-flash-swaps
https://docs.uniswap.org/protocol/guides/flash-integrations/flash-callback
https://docs.aave.com/developers/guides/flash-loans
https://docs.soliditylang.org/en/v0.6.2/contracts.html#fallback-function
https://doc.rust-lang.org/book/
https://twitter.com/0xmebius


12/10/2021

Learn By Example:

https://doc.rust-lang.org/rust-by-example/hello.html

https://twitter.com/0xmebius https://github.com/0xmebius

https://doc.rust-lang.org/rust-by-example/hello.html
https://twitter.com/0xmebius

